Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Front Immunol ; 13: 1043219, 2022.
Article in English | MEDLINE | ID: covidwho-2246241

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Infected individuals display a wide spectrum of disease severity, as defined by the World Health Organization (WHO). One of the main factors underlying this heterogeneity is the host immune response, with severe COVID-19 often associated with a hyperinflammatory state. Aim: Our current study aimed to pinpoint the specific genes and pathways underlying differences in the disease spectrum and outcomes observed, through in-depth analyses of whole blood transcriptomics in a large cohort of COVID-19 participants. Results: All WHO severity levels were well represented and mild and severe disease displaying distinct gene expression profiles. WHO severity levels 1-4 were grouped as mild disease, and signatures from these participants were different from those with WHO severity levels 6-9 classified as severe disease. Severity level 5 (moderate cases) presented a unique transitional gene signature between severity levels 2-4 (mild/moderate) and 6-9 (severe) and hence might represent the turning point for better or worse disease outcome. Gene expression changes are very distinct when comparing mild/moderate or severe cases to healthy controls. In particular, we demonstrated the hallmark down-regulation of adaptive immune response pathways and activation of neutrophil pathways in severe compared to mild/moderate cases, as well as activation of blood coagulation pathways. Conclusions: Our data revealed discrete gene signatures associated with mild, moderate, and severe COVID-19 identifying valuable candidates for future biomarker discovery.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , Transcriptome , SARS-CoV-2 , Gene Expression Profiling , Neutrophils
2.
J Med Radiat Sci ; 70(1): 40-45, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2239508

ABSTRACT

INTRODUCTION: The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has resulted in a global healthcare crisis. The provision of computed tomography (CT) imaging services by radiology departments for COVID-19 patients poses multiple challenges. Consequently, it is important to explore the clinical need and indications for thoracic CT and whether they subsequently alter patient management. METHODS: We report our experience in this single-centre retrospective cohort study of all confirmed COVID-19 cases admitted during the peak of the 'Delta' variant wave in Australia, and who underwent a chest CT. Clinical indication and patient management plan pre- and post-CT were ascertained. RESULTS: A total of 92 out of 1403 patients who were admitted with COVID-19 underwent a thoracic CT (73 CT pulmonary angiogram (CTPA), 14 CT Chest and five high-resolution CT (HRCT) studies). 72.8% of studies were to evaluate for pulmonary emboli, 16.2% for assessment of COVID-19 pneumonia complications, 5.4% for tuberculosis and 6.5% for other indications. 21 (23%) of these studies resulted in a change in management with two patients having a major change in management (thrombolysis, CT-guided aspiration). Management was altered due to diagnosis of pulmonary embolism (PE), pneumonia, cryptogenic organising pneumonia and other reasons. Of 73 CTPA studies, 11 (15%) patients had evidence of PE. CONCLUSION: In our centre, thoracic CT in COVID-19 patients were predominantly for the evaluation of PE with other indications being for COVID-19 complications and other cardiopulmonary pathologies. 23% of studies subsequently altered patient management, suggesting there is good clinical need for CT chests for these indications.


Subject(s)
COVID-19 , Pulmonary Embolism , Humans , SARS-CoV-2 , Retrospective Studies , Pandemics , Tomography, X-Ray Computed/methods , Pulmonary Embolism/epidemiology
3.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2236852

ABSTRACT

Background Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Infected individuals display a wide spectrum of disease severity, as defined by the World Health Organization (WHO). One of the main factors underlying this heterogeneity is the host immune response, with severe COVID-19 often associated with a hyperinflammatory state. Aim Our current study aimed to pinpoint the specific genes and pathways underlying differences in the disease spectrum and outcomes observed, through in-depth analyses of whole blood transcriptomics in a large cohort of COVID-19 participants. Results All WHO severity levels were well represented and mild and severe disease displaying distinct gene expression profiles. WHO severity levels 1-4 were grouped as mild disease, and signatures from these participants were different from those with WHO severity levels 6-9 classified as severe disease. Severity level 5 (moderate cases) presented a unique transitional gene signature between severity levels 2-4 (mild/moderate) and 6-9 (severe) and hence might represent the turning point for better or worse disease outcome. Gene expression changes are very distinct when comparing mild/moderate or severe cases to healthy controls. In particular, we demonstrated the hallmark down-regulation of adaptive immune response pathways and activation of neutrophil pathways in severe compared to mild/moderate cases, as well as activation of blood coagulation pathways. Conclusions Our data revealed discrete gene signatures associated with mild, moderate, and severe COVID-19 identifying valuable candidates for future biomarker discovery.

4.
Int J Mol Sci ; 24(3)2023 Jan 28.
Article in English | MEDLINE | ID: covidwho-2216342

ABSTRACT

Patients with preexisting metabolic disorders such as diabetes are at a higher risk of developing severe coronavirus disease 2019 (COVID-19). Mitochondrion, the very organelle that controls cellular metabolism, holds the key to understanding disease progression at the cellular level. Our current study aimed to understand how cellular metabolism contributes to COVID-19 outcomes. Metacore pathway enrichment analyses on differentially expressed genes (encoded by both mitochondrial and nuclear deoxyribonucleic acid (DNA)) involved in cellular metabolism, regulation of mitochondrial respiration and organization, and apoptosis, was performed on RNA sequencing (RNASeq) data from blood samples collected from healthy controls and patients with mild/moderate or severe COVID-19. Genes from the enriched pathways were analyzed by network analysis to uncover interactions among them and up- or downstream genes within each pathway. Compared to the mild/moderate COVID-19, the upregulation of a myriad of growth factor and cell cycle signaling pathways, with concomitant downregulation of interferon signaling pathways, were observed in the severe group. Matrix metallopeptidase 9 (MMP9) was found in five of the top 10 upregulated pathways, indicating its potential as therapeutic target against COVID-19. In summary, our data demonstrates aberrant activation of endocrine signaling in severe COVID-19, and its implication in immune and metabolic dysfunction.


Subject(s)
COVID-19 , Humans , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Signal Transduction , Intercellular Signaling Peptides and Proteins , Mitochondria/metabolism
5.
BMJ Open ; 12(12): e065401, 2022 12 09.
Article in English | MEDLINE | ID: covidwho-2193788

ABSTRACT

INTRODUCTION: There has been renewed interest in the therapeutic use of bacteriophages (phages); however, standardised therapeutic protocols are lacking, and there is a paucity of rigorous clinical trial data assessing efficacy. METHODS AND ANALYSIS: We propose an open-label, single-arm trial investigating a standardised treatment and monitoring protocol for phage therapy. Patients included will have exhausted other therapeutic options for control of their infection and phage therapy will be administered under Australia's Therapeutic Goods Administration Special Access Scheme. A phage product with high in vitro activity against the targeted pathogen(s) must be available in line with relevant regulatory requirements. We aim to recruit 50-100 patients over 5 years, from any public or private hospitals in Australia. The standardised protocol will specify clinical assessments and biological sampling at scheduled time points. The primary outcome is safety at day 29, assessed by the frequency of adverse events, and overseen by an independent Data Safety Monitoring Board. Secondary outcomes include long-term safety (frequency of adverse events until at least 6 months following phage therapy), and feasibility, measured as the proportion of participants with>80% of minimum data available for analysis. Additional endpoints assessed include clinical response, patient/guardian reported quality of life measures, phage pharmacokinetics, human host immune responses and microbiome analysis. All trial outcomes will be summarised and presented using standard descriptive statistics. ETHICS AND DISSEMINATION: Participant inclusion will be dependent on obtaining written informed consent from the patient or guardian. The trial protocol was approved by the Sydney Children's Hospitals Network Human Research Ethics Committee in December 2021 (Reference 2021/ETH11861). In addition to publication in a peer-reviewed scientific journal, a lay summary of study outcomes will be made available for participants and the public on the Phage Australia website (https://www.phageaustralia.org/). TRIAL REGISTRATION NUMBER: Registered on ANZCTR, 10 November 2021 (ACTRN12621001526864; WHO Universal Trial Number: U1111-1269-6000).


Subject(s)
COVID-19 , Phage Therapy , Adult , Child , Humans , Quality of Life , SARS-CoV-2 , Treatment Outcome
6.
BMJ Open ; 11(1): e044497, 2021 01 06.
Article in English | MEDLINE | ID: covidwho-1013055

ABSTRACT

INTRODUCTION: Accurate triage is an important first step to effectively manage the clinical treatment of severe cases in a pandemic outbreak. In the current COVID-19 global pandemic, there is a lack of reliable clinical tools to assist clinicians to perform accurate triage. Host response biomarkers have recently shown promise in risk stratification of disease progression; however, the role of these biomarkers in predicting disease progression in patients with COVID-19 is unknown. Here, we present a protocol outlining a prospective validation study to evaluate the biomarkers' performance in predicting clinical outcomes of patients with COVID-19. METHODS AND ANALYSIS: This prospective validation study assesses patients infected with COVID-19, in whom blood samples are prospectively collected. Recruited patients include a range of infection severity from asymptomatic to critically ill patients, recruited from the community, outpatient clinics, emergency departments and hospitals. Study samples consist of peripheral blood samples collected into RNA-preserving (PAXgene/Tempus) tubes on patient presentation or immediately on study enrolment. Real-time PCR (RT-PCR) will be performed on total RNA extracted from collected blood samples using primers specific to host response gene expression biomarkers that have been previously identified in studies of respiratory viral infections. The RT-PCR data will be analysed to assess the diagnostic performance of individual biomarkers in predicting COVID-19-related outcomes, such as viral pneumonia, acute respiratory distress syndrome or bacterial pneumonia. Biomarker performance will be evaluated using sensitivity, specificity, positive and negative predictive values, likelihood ratios and area under the receiver operating characteristic curve. ETHICS AND DISSEMINATION: This research protocol aims to study the host response gene expression biomarkers in severe respiratory viral infections with a pandemic potential (COVID-19). It has been approved by the local ethics committee with approval number 2020/ETH00886. The results of this project will be disseminated in international peer-reviewed scientific journals.


Subject(s)
Biomarkers/metabolism , COVID-19/metabolism , Critical Illness/epidemiology , Emergency Service, Hospital/statistics & numerical data , Pandemics , SARS-CoV-2 , Triage/methods , Adult , COVID-19/epidemiology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prognosis , Prospective Studies , Time Factors
7.
Intern Med J ; 51(1): 42-51, 2021 01.
Article in English | MEDLINE | ID: covidwho-944728

ABSTRACT

BACKGROUND: On 31 December 2019, the World Health Organization recognised clusters of pneumonia-like cases due to a novel coronavirus disease (COVID-19). COVID-19 became a pandemic 71 days later. AIM: To report the clinical and epidemiological features, laboratory data and outcomes of the first group of 11 returned travellers with COVID-19 in Australia. METHODS: This is a retrospective, multi-centre case series. All patients with confirmed COVID-19 infection were admitted to tertiary referral hospitals in New South Wales, Queensland, Victoria and South Australia. RESULTS: The median age of the patient cohort was 42 years (interquartile range (IQR), 24-53 years) with six men and five women. Eight (72.7%) patients had returned from Wuhan, one from Shenzhen, one from Japan and one from Europe. Possible human-to-human transmission from close family contacts in gatherings overseas occurred in two cases. Symptoms on admission were fever, cough and sore throat (n = 9, 81.8%). Co-morbidities included hypertension (n = 3, 27.3%) and hypercholesterolaemia (n = 2, 18.2%). No patients developed severe acute respiratory distress nor required intensive care unit admission or mechanical ventilation. After a median hospital stay of 14.5 days (IQR, 6.75-21), all patients were discharged. CONCLUSIONS: This is a historical record of the first COVID-19 cases in Australia during the early biocontainment phase of the national response. These findings were invaluable for establishing early inpatient and outpatient COVID-19 models of care and informing the management of COVID-19 over time as the outbreak evolved. Future research should extend this Australian case series to examine global epidemiological variation of this novel infection.


Subject(s)
COVID-19/epidemiology , Adult , Australia/epidemiology , COVID-19/therapy , Female , Humans , Male , Middle Aged , Patient Discharge , Retrospective Studies , Tertiary Care Centers , Young Adult
8.
J Med Imaging Radiat Oncol ; 64(5): 668-670, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-807728

ABSTRACT

This case report describes our early radiological experiences of middle-aged patients with COVID-19 at Westmead Hospital, Sydney. We found limited relationship between initial CT imaging appearances and progression to severe disease. The most effective use of imaging in COVID-19 is yet to be determined.


Subject(s)
Coronavirus Infections/diagnostic imaging , Lung Diseases/diagnostic imaging , Lung Diseases/virology , Pneumonia, Viral/diagnostic imaging , Radiography, Thoracic , Tomography, X-Ray Computed , Adult , Australia/epidemiology , Betacoronavirus , COVID-19 , Coronavirus Infections/epidemiology , Disease Progression , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL